
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 19: Transactions and LFS

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Ordering updates to a filesystem.

2. Shadowing.

3. Logging.

4. Log-structured filesystems (LFS).

5. Project 4 preview.

2

Agenda
1. Ordering updates to a filesystem.

2. Shadowing.

3. Logging.

4. Log-structured filesystems (LFS).

5. Project 4 preview.

3

Multiple updates and reliability
Data must survive crashes and power outages.

Only the update of a single block is atomic and durable.
Challenge: Crashes in midst of multi-step updates.

Move file from directory a to directory b.
1. Delete file from a.
2. Add file to b.

Create new (empty) file.
1. Update directory to point to new file header.
2. Write new file header to disk.

4

Ordering of updates
Careful ordering can fix some problems:

For example, creating file 482.txt in directory eecs
Updating directory first could leave the FS corrupted.

5

Directory
eecs 1024

???

Never have a pointer from valid block to invalid one!

Ordering of updates
Careful ordering can fix some problems:

For example, creating file 482.txt in directory eecs
Creating the inode first solves the problem.

6

Directory

Inode
Size: 0
...

OK to modify unreachable blocks on disk.

Ordering of updates
Careful ordering can fix some problems:

For example, creating file 482.txt in directory eecs
Creating the inode first solves the problem.

7

Inode
Size: 0
...

Careful ordering goes from one consistent state to another.

Directory
eecs 1024

Ordering not always enough
Example: Create a file and update the free block list.

1. Write new file header to disk.
2. Update directory to point to new file header.
3. Write the new free map.

No ordering is safe.

8

ACID terminology
Database systems are commonly describing as offering ACID
properties. For a filesystem, we mostly care about atomicity and
durability.

Atomicity All or nothing. The operation either succeeds or
does nothing.

Consistency Representation invariants observed before and
after an operation.

Isolation Any intermediate states are invisible to other
transactions which only see the state before or
after.

Durability Once an operation succeeds, the changes persist
and will not be undone, even in the event of a
system failure.

9

Transactions
Need a way to create
transactions with atomicity
and durability. But only writes
to a single sector to a disk
are atomic.

How to make a sequence of
updates atomic?

Two main methods:

1. Shadowing.
2. Logging

10

begin
write disk
write disk
write disk

end // commit the transaction)

Agenda
1. Ordering updates to a filesystem.

2. Shadowing.

3. Logging.

4. Log-structured filesystems (LFS).

5. Project 4 preview.

11

Shadowing
Replicate the data across two stores:

One is the current version, the other is backup.
Current pointer points to the current version.

12

Accounts
Savings: $500
Checking: $500

Accounts
Savings: $500
Checking: $500

Pointer

Current: 1

At beginning of transaction, both replicas are identical.

Shadowing
Transaction updates the backup (shadow)

First add $100 to savings.

13

We are modifying “unreachable” block.

Accounts
Savings: $500
Checking: $500

Accounts
Savings: $600
Checking: $500

Pointer

Current: 1

Shadowing
Transaction updates the backup (shadow)

Next remove $100 from checking

14

Again modifying an “unreachable” block.

Accounts
Savings: $500
Checking: $500

Accounts
Savings: $600
Checking: $400

Pointer

Current: 1

Shadowing
Transaction commit switches the pointer.

This is the point when updates become durable.

15

Accounts
Savings: $500
Checking: $500

Accounts
Savings: $600
Checking: $400

Pointer

Current: 2

Updating a single block is atomic.

Shadowing
Finally, must update new shadow.

First, update savings.

16

Accounts
Savings: $600
Checking: $500

Accounts
Savings: $600
Checking: $400

Pointer

Current: 2

Again, updating an unreachable block.

Shadowing
Finally, must update new shadow.

Next, update checking.

17

Accounts
Savings: $600
Checking: $400

Accounts
Savings: $600
Checking: $400

Pointer

Current: 2

Again, updating an unreachable block.

Requires a way of
replaying the changes from
a log or other means of
resyncing the new shadow.

Shadowing summary
Can make arbitrary set of updates in transaction.

Pointer switch is always an atomic commit.

Downside?
Requires replicating the data store.
Requires means of resyncing the shadow.

Can reduce the cost by shadowing only when needed.
On demand. Sometimes called shadow paging.
Create the shadow only when you need to make a change.
Once the change has been committed, delete the old copy.
Used in modern file systems (WAFL, ZFS, ...).

18

Optimizing shadowing
Block can store more
than just a 1-bit
pointer.

Example: move
notes from
/482/w17/ to
/482/w18/

Which blocks need to
be updated?

Which block can be
updated in-place?

What if the 482
directory took more
than one block?

19

/ inode

/ directory

482 inode

w17 inode w18 inode

notes inode

482 directory

notes file contents

w17 directory w18 directory

Optimizing shadowing

20

/ inode

/ directory

482 inode

w17 inode w18 inode

notes inode

If the 482 directory was so big
that it spanned multiple
blocks, you’d have to go up
more level to switch at the
inode.

Shadowing summary
Need to propagate shadowing up tree until you find a
single block that can be changed.

Find a common ancestor.
May be the root of the file system.

For example, what if free block list persistent?
Coalesce multiple transactions for efficiency.

Instead of deallocating, can keep old blocks.
Snapshot (past version) of file system state.

21

Agenda
1. Ordering updates to a filesystem.

2. Shadowing.

3. Logging.

4. Log-structured filesystems (LFS).

5. Project 4 preview.

22

Transactions via Logging
Divide storage into:
Data store: Persistent copy of data.
Log: Sequential region that enables transaction updates.

23

Log

Data
Store Checking

$500
Savings

$500

Logging example
Step 1: Append updates to log.

E.g., (LBN, data) tuples (value logging).
Data store not updated, so no changes if crash.

24

Log

Data
Store

Checking
$400

Savings
$600

Checking
$500

Savings
$500

Logging example
Step 2: To commit transaction

Append “commit” record to log.
Step 3: Apply updates in log to data store.

25

Log

Data
Store

Commit

Checking
$500

Savings
$500

Checking
$400

Savings
$600

Logging example
What if we crash before applying all updates?

Upon restart, apply all updates in log until last commit
record.

26

Log

Data
Store Checking

$400
Savings

$500

CommitChecking
$400

Savings
$600

Logging example
After applying updates:

Checkpoint log (remove records written to store).

27

Log

Data
Store Checking

$400
Savings

$600

Transactions with logging
Write updates to append-only log before
updating file system

Write commit sector to end of log

Eventually, copy new data from log to file
system

28

Transactions with logging
System crash before writing commit record?

Store unmodified, recovery ignores log records.

System crash after writing commit record, but before
applying updates to data store?

Updates before commit record will be written to store
during replay.

Transaction committed by single sector write.
System crash while replaying log?

29

Format of log records
Why is logging in this form problematic?

Crash after updating checking = lose $100!
Log operations should be idempotent, meaning they
can redone and produce the same result.

30

Log

Data
Store Checking

$500
Savings

$500

CommitChecking
-$100

Savings
+$100

Journaling
Many file systems implement transactions via logging.

Ext3, Ext4, NTFS, etc.
Often referred to as journaling.

Journaling all updates felt to be too slow.
Why might this be?

Large file writes: 2x disk writes.
Ext4 has 3 modes:

1. Journal all updates.
2. Journal just the metadata (default).
3. No journaling.

31

Agenda
1. Ordering updates to a filesystem.

2. Shadowing.

3. Logging.

4. Log-structured filesystems (LFS).

5. Project 4 preview.

32

Log-structured file system
Filesystem proposed by John K. Ousterhout and Fred
Douglis in 1988.
First implemented in 1992 by Ousterhout and Mendel
Rosenblum.

33

Log-structured file system
Goal: Try to do all the I/O to sequential blocks.

The application, not the OS, chooses what to read next, so
we’re forced to use caching for reads.

But we can write to any free block, meaning we can force
writes into sequential blocks.

Basic idea: Treat the disk as an append-only log.
Append all writes to log, no data store.

What does it take to update the data in /home/eecs/482/notes?

34

LFS Write Example

What does it take to update the data in
/home/eecs/482/notes?

1. Write data block for notes.
But, now inode points to wrong block.

35

Log notes
block 0

LFS Write Example

What does it take to update the data in
/home/eecs/482/notes?

1. Write data block for notes.
2. Write inode for notes.

But, now 482 directory contains wrong LBN.

36

Log notes
block 0

notes
inode

LFS Write Example

What does it take to update the data in
/home/eecs/482/notes?

1. Write data block for notes.
2. Write inode for notes.
3. Write data block, inode for 482.
4. Continue all the way up to root inode.

37

Log notes
block 0

notes
inode

482
block 0

482
inode

Finding data in LFS

New data structure: inode map (indirection!)
Directory entries contain inode number.
inode map translates inode number to disk block.

inode map is periodically checkpointed.
Cached in memory for performance.

38

39

LFS: Garbage collection

LFS append-only quickly runs out of disk space.
Overwriting, deletion creates garbage.
Need an efficient garbage collector (cleaner).

LFS divides log into large segments.
Choose clean segment, write sequentially.
Background cleaner creates new clean segments.

Read in full segments, Copy live data to end of log.

Cleaning is expensive for high utilization.

40

Write Cost Comparison

Write cost of 2
if 20% full Write cost of 10

if 80% full

LFS on SSDs
LFS rarely used for hard drives.
But the characteristics of SSDs a perfect match for LFS.

1. Random reads very cheap, writes expensive.
LFS optimizes for write performance.

2. Need to erase large chunks before overwrite.
LFS log cleaning enables background erase.

3. SSDs have wearout after too many writes.
Log structure does automatic wear leveling.

Flash Translation Layer essentially an LFS.

41

Agenda
1. Ordering updates to a filesystem.

2. Shadowing.

3. Logging.

4. Log-structured filesystems (LFS).

5. Project 4 preview.

42

Project 4: due August 17
Secure, multi-threaded network file server

Network programming, file systems, client-server,
threads/concurrency, even a little security.
Experience writing significant concurrent program.

Good news: concepts simpler than projects 2 and 3.
Bad news: Perhaps 3x as much code as project 3.

Make sure to try out Friday’s lab questions.

43

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 19: Transactions and LFS
	Agenda
	Agenda
	Multiple updates and reliability
	Ordering of updates
	Ordering of updates
	Ordering of updates
	Ordering not always enough
	ACID terminology
	Transactions
	Agenda
	Shadowing
	Shadowing
	Shadowing
	Shadowing
	Shadowing
	Shadowing
	Shadowing summary
	Optimizing shadowing
	Optimizing shadowing
	Shadowing summary
	Agenda
	Transactions via Logging
	Logging example
	Logging example
	Logging example
	Logging example
	Transactions with logging
	Transactions with logging
	Format of log records
	Journaling
	Agenda
	Log-structured file system
	Log-structured file system
	LFS Write Example
	LFS Write Example
	LFS Write Example
	Finding data in LFS
	LFS: Garbage collection
	Write Cost Comparison
	LFS on SSDs
	Agenda
	Project 4: due August 17

